top of page
Auf einen Bildschirm starren

Zwischenstand meiner laufenden Dissertation ///
Interim status of my current dissertation

Hinweis:
Da ich meine Dissertation auf Englisch verfasse, ist der fortlaufende Abschnitt teils Deutsch und Englisch.

Note:
Since I am writing my dissertation in English, the continuous section is partly German and English.

Uni MS-Logo_weiß.png
University

© Dietmar Rabich

University of Münster

DE:
Die Universität Münster gehört mit rund 45.000 Studierenden und über 15 Fachbereichen zu den größten und forschungsstärksten Universitäten Deutschlands. Sie ist Mitglied der German U15, dem Netzwerk forschungsintensiver Universitäten, und zählt laut THE-Ranking regelmäßig zu den besten Hochschulen weltweit in verschiedenen Disziplinen. Die strategische Förderung interdisziplinärer Forschung - etwa durch Graduate Schools wie die WWU Graduate Centre - schafft ideale Rahmenbedingungen für ein Promotionsvorhaben an der Schnittstelle von Architektur, Raumwahrnehmung und Technologie.

EN:
With over 45,000 students and more than 15 faculties, the University of Münster is one of Germany’s largest and most research-intensive universities. As a member of the German U15 group of leading research universities and a regular performer in international rankings such as the Times Higher Education (THE) ranking, Münster offers a high-caliber academic environment. Its commitment to interdisciplinary collaboration - supported by structures like the WWU Graduate Centre - provides an ideal framework for doctoral research at the interface of architecture, spatial cognition, and technology.

Institute

Institute for Geoinformatics (ifgi)

DE:
Das Institut für Geoinformatik (ifgi) der Universität Münster zählt zu den führenden Standorten für Geoinformatikforschung in Europa. Es ist Gründungsmitglied des internationalen Netzwerks Geo4All der Open Source Geospatial Foundation (OSGeo) und war mehrfach federführend an EU-geförderten Forschungsprojekten beteiligt (z. B. H2020, FP7). Das ifgi kombiniert angewandte Forschung mit theoretischer Fundierung in den Bereichen Location-based Services, räumliche Mensch-Computer-Interaktion, mobiles Eye Tracking und intelligente Umgebungen. Für forschungsgetriebene Architektur mit geodatenbasiertem Fokus bietet das Institut damit eine inhaltlich wie technologisch hochrelevante Umgebung.

EN:
The Institute for Geoinformatics (ifgi) at the University of Münster is among Europe’s top research hubs for spatial information science. As a founding member of the Geo4All initiative by the Open Source Geospatial Foundation (OSGeo), and a lead institution in several EU-funded projects (e.g., H2020, FP7), ifgi combines applied innovation with strong theoretical foundations in location-based services, spatial HCI, mobile eye tracking, and intelligent environments. For architecture-driven research involving geospatial data and interaction, ifgi provides both a cutting-edge technological base and a highly relevant academic context.

ifgi-Logo_weiß.png
tuxpi.com.1748801873.jpg
Research Lab
SPARC-Logo_weiß.png
tuxpi.com.1748802309.jpg

Spatial and Architectural Cognition Lab (SPARC)

DE:
Das SPARC Lab ist Teil des Instituts für Geoinformatik und spezialisiert auf die Erforschung räumlicher Kognition, insbesondere im Zusammenhang mit Navigation, Orientierung und Umweltbewusstsein. Die Arbeitsgruppe ist interdisziplinär aufgestellt - mit Forschungsschwerpunkten an der Schnittstelle zwischen kognitiver Psychologie, Informatik, Stadtplanung und Architektur. SPARC kooperiert international (u. a. mit MIT, UCL, ETH Zürich) und ist regelmäßig auf Konferenzen wie GIScienceCHI oder Spatial Cognition vertreten. Die Nähe zu empirischen Methoden und technologiebasierter Interaktion macht das Lab zu einem hoch spezialisierten Umfeld für raumbezogene Forschung mit architektonischem Bezug.

EN:
The SPARC Lab, part of the Institute for Geoinformatics, specializes in spatial cognition research, focusing on navigation, wayfinding, and environmental awareness. Its interdisciplinary team spans cognitive psychology, computer science, urban studies, and architecture. The lab maintains international collaborations (e.g., with MIT, UCL, and ETH Zurich) and is regularly represented at major conferences such as GIScience, CHI, and Spatial Cognition. With its strong empirical orientation and technical expertise, SPARC offers a highly specialized environment for spatial research with architectural relevance.

Eckdaten der Promotion
Key data of the promotion

Key Data

DE:
Promotionsfach:

Geoinformatik

Art der Promotion:

Doktor der Naturwissenschaften (Dr. rer. nat.)

Betreuender Professor:

Prof. Dr. Jakub Krukar

Universität Münster - Institut für Geoinformatik

Geplanter Titel meiner Dissertation:

Kognitive Wegfindung in responsiven Räumen: Wie adaptive architektonische Räume auf menschliche Wahrnehmung reagieren

EN:
Doctoral subject:

​Geoinformatics

Type of Doctoral Degree:

​Doctor of Natural Sciences (Dr. rer. nat.)

Principal supervisor:

Prof. Dr. Jakub Krukar

University of Münster - Institute for Geoinformatics

Planned title of my dissertation:

Cognitive Wayfinding in Responsive Spaces: How Adaptive Architecture Spaces Responds to Human Perception

Motivationsschreiben
Letter of motivation

DE:

Mit meiner Promotion verfolge ich konsequent einen wissenschaftlichen Weg, der für mich längst mehr ist als ein akademischer Abschnitt: Es ist mein Weg, Räume nicht nur zu entwerfen, sondern ihre Wirkung auf den Menschen zu verstehen und bewusst zu gestalten.

Ich promoviere im Fach Geoinformatik an der Universität Münster, eingebettet in das interdisziplinäre Forschungsumfeld des SPARC-Lab („Spatial and Architectural Cognition“). Meine Dissertation befasst sich mit der Frage, wie adaptive räumliche Systeme auf menschliche Wahrnehmung reagieren können - insbesondere in Bezug auf Navigation, visuelle Aufmerksamkeit und Eye Tracking. Ziel ist es, Mechanismen zu identifizieren, die es ermöglichen, architektonische Räume so zu gestalten, dass sie Orientierung intuitiv unterstützen - sei es durch dynamische Projektionen, gezielte Raummodulation oder rückgekoppelte Reize.

Die Idee, dass Architektur nicht nur gebaut, sondern verstanden, gelesen und erlebt werden muss, begleitet mich seit den frühen Phasen meines Studiums. Meine Masterarbeit zum Thema partizipatives Entwerfen mit KI-basierter Unterstützung war ein erster Schritt in Richtung interaktiver, benutzerzentrierter Raumgestaltung. Sie legte das Fundament für meine heutige Forschung: Wie lassen sich Wahrnehmungsmuster erkennen - und in Echtzeit in Gestaltung übersetzen?

Was mich motiviert, ist die Überzeugung, dass Architektur nicht neutral ist. Räume beeinflussen, wie wir uns fühlen, bewegen, erinnern. Sie leiten, fordern, schützen. Gerade in komplexen Umgebungen - Krankenhäusern, Bildungsstätten, Behörden - ist eine intuitive Orientierung nicht nur hilfreich, sondern entscheidend. In meiner theoretischen Vorarbeit (Designing for Direction, 2024) analysierte ich ausführlich, warum Menschen sich in Gebäuden verirren und welche kognitiven, gestalterischen und emotionalen Faktoren dabei eine Rolle spielen. Daraus entstand mein aktueller Forschungsschwerpunkt: Architektur als reagierendes System, nicht als statische Umgebung.

Ich bin davon überzeugt, dass genau an dieser Schnittstelle zwischen Entwurf, Kognition und Technik enormes Potenzial liegt - nicht nur für die Wissenschaft, sondern auch für die architektonische Praxis. Architektur wird zunehmend datenbasiert, adaptiv und situativ. Genau hier möchte ich meine Fähigkeiten einsetzen: analytisch denken, ästhetisch entwerfen, technisch umsetzen.

Wissenschaftlich sehe ich mich langfristig an der Schnittstelle von Forschung und Lehre - mit der Perspektive, mein Wissen weiterzugeben. Zugleich strebe ich danach, auch in der architektonischen Berufspraxis Maßstäbe zu setzen. Mein Ziel ist es, an Innovationen mitzuwirken, die nicht nur technisch brillant, sondern räumlich sinnvoll und menschlich nachvollziehbar sind. Ich glaube daran, dass Architektur mehr leisten kann - und muss.

Dass ich diesen Anspruch mitbringe, verdanke ich nicht zuletzt meiner Biografie: Aufgewachsen im Münsterland, geprägt durch internationale Jahre in den Vereinigten Arabischen Emiraten, eingebettet in ein familiäres Umfeld mit handwerklichem und ingenieurtechnischem Hintergrund. Ich habe früh gelernt, Gestaltung als Balance zwischen Gefühl und Konstruktion, zwischen Verantwortung und Vision zu begreifen.

Ebenso prägend war mein langjähriges ehrenamtliches Engagement im Jugendrotkreuz, das mir gezeigt hat, wie wichtig es ist, für andere mitzudenken und mitzugestalten - eine Haltung, die ich heute in meiner Forschung weiterführe: Nutzerzentrierung ist für mich kein Schlagwort, sondern ein gestalterischer Imperativ.

EN:

Pursuing my doctorate is a continuation of a scientific path that has long become more than just an academic endeavor to me. It is my way of engaging with architecture not merely as something to be designed and built, but as something to be understood, interpreted, and consciously shaped in relation to the human experience.

I am currently pursuing my PhD in Geoinformatics at the University of Münster, embedded in the interdisciplinary research environment of the SPARC Lab (“Spatial and Architectural Cognition”). My dissertation examines how adaptive spatial systems can respond to human perception specifically in relation to navigation, visual attention, and eye tracking. The goal is to identify mechanisms that enable architectural spaces to support intuitive orientation whether through dynamic projections, spatial modulation, or real-time feedback stimuli.

The belief that architecture must not only be constructed but also understood, read, and experienced has accompanied me since the early stages of my academic journey. My Master’s thesis, which focused on participatory design supported by AI-based tools, marked a first step toward interactive, user-centered spatial design. It laid the foundation for my current research: How can perceptual patterns be identified and translated into spatial responses in real time?

What motivates me is the conviction that architecture is never neutral. Spaces shape how we feel, move, and remember. They guide, challenge, protect. Especially in complex environments hospitals, educational institutions, government buildings intuitive orientation is not just helpful, but essential. In my theoretical groundwork (Designing for Direction, 2024), I analyzed in depth why people get lost in buildings and which cognitive, spatial, and emotional factors play a role. This led to my current research focus: understanding architecture as a responsive system, not a static backdrop.

I am deeply convinced that this intersection of design, cognition, and technology holds great potential not only for academic research but also for architectural practice. Architecture is becoming increasingly data-driven, adaptive, and situational. This is exactly where I want to apply my skills: thinking analytically, designing aesthetically, and implementing technically.

In the long term, I see myself at the interface of research and teaching, with the aspiration to pass on my knowledge to others. At the same time, I strive to make a lasting impact in the architectural profession contributing to innovations that are not only technically outstanding, but spatially meaningful and intuitively comprehensible. I believe that architecture can and must do more.

That I bring this aspiration with me is closely linked to my personal background: growing up in Münsterland, shaped by international years in the United Arab Emirates, and rooted in a family environment defined by craftsmanship and engineering. I learned early on to see design as a balance between intuition and construction, between responsibility and vision.

Equally formative was my long-standing volunteer work with the German Red Cross Youth, which taught me the importance of thinking and designing with others in mind a mindset that continues to shape my research today. For me, user-centered design is not a buzzword, but a design imperative.

Letter of Motivation

Exposé meiner Dissertation
Exposé of my dissertation

Exposé

Zusammenfassung
Summary

DE:

Moderne Gebäude stellen hohe Anforderungen an unsere räumliche Orientierung: In komplexen Umgebungen wie Krankenhäusern, Flughäfen oder Universitäten verlieren Menschen häufig die Orientierung - mit Auswirkungen auf Wohlbefinden, Effizienz und Sicherheit. Diese Dissertation untersucht, wie architektonische Räume so gestaltet werden können, dass sie in Echtzeit auf menschliche Wahrnehmung reagieren und die Navigation gezielt erleichtern.

Im Zentrum steht die Verbindung dreier Forschungsfelder: Navigation im Raum, visuelle Aufmerksamkeit (gemessen mittels Eye Tracking) und adaptive Projektionswände als interaktive Gestaltungselemente. Die Arbeit positioniert sich damit an der Schnittstelle von Raumkognition, Human-Computer-Interaction und responsiver Architektur. Ziel ist es, eine neuartige Entwurfsmethodik zu entwickeln, die es ermöglicht, adaptive Räume zu gestalten, die auf visuelle Reize und kognitive Strategien von Nutzer*innen reagieren.

Methodisch kombiniert die Dissertation virtuelle Architekturmodelle mit Eye-Tracking-Experimenten, deren Daten in ein adaptives Raumverhalten überführt werden. So entsteht ein innovativer Forschungsansatz, der gestalterisches Denken mit geoinformatischer Analyse und psychologischen Erkenntnissen verknüpft. Der interdisziplinäre Zugang versteht Architektur nicht nur als physisches Gefüge, sondern als lern- und reaktionsfähiges System - mit dem Ziel, Räume intuitiver, inklusiver und menschenzentrierter zu gestalten.

EN:

Modern buildings place high demands on our spatial orientation: In complex environments such as hospitals, airports, or universities, people frequently lose their sense of direction with consequences for well-being, efficiency, and safety. This dissertation investigates how architectural spaces can be designed to respond to human perception in real time and actively facilitate navigation.

At the core of the project lies the integration of three research domains: spatial navigation, visual attention (measured through eye tracking), and adaptive projection walls as interactive design elements. The work is situated at the intersection of spatial cognition, human-computer interaction, and responsive architecture. Its aim is to develop a novel design methodology that enables the creation of adaptive environments that respond to users' visual stimuli and cognitive navigation strategies.

Methodologically, the dissertation combines virtual architectural models with eye-tracking experiments, translating perception data into responsive spatial behavior. This results in an innovative research approach that merges architectural thinking with geoinformatics and psychological insight. The interdisciplinary perspective understands architecture not merely as a physical construct, but as a learning and reactive system with the goal of creating environments that are more intuitive, inclusive, and human-centered.

Title Page Design for Dissertation - visual selection_weiß.png
Summary

Geplante Gliederung meiner Dissertationsschrift
Planned structure of my dissertation

Planned Structure

DE:

1. Einleitung

  • Problemstellung & Relevanz
    In diesem Abschnitt stelle ich dar, warum die Navigation in komplexen Gebäuden ein reales Problem darstellt - sowohl aus nutzerzentrierter als auch aus architektonischer Sicht. Ich zeige auf, wie Desorientierung zu Stress, Ineffizienz und Ausschluss führen kann.

  • Zielsetzung und Leitfrage(n)
    Die zentrale Forschungsfrage lautet: Wie kann Architektur durch adaptive, visuelle Reize zur Verbesserung der räumlichen Orientierung beitragen? Ich erläutere, welche Hypothesen ich prüfe und welches Ziel ich verfolge.

  • Eigener Forschungsansatz und Positionierung im Forschungsfeld
    Ich beschreibe meinen interdisziplinären Zugang zwischen Architektur, Geoinformatik und Kognitionspsychologie und grenze mein Projekt von bestehenden Arbeiten ab.

  • Aufbau der Arbeit
    Überblick über den strukturellen Aufbau und die Logik der Gliederung.

     

2. Forschungsstand und Theoretische Grundlagen

  • Raumkognition und Orientierungstheorien
    Überblick über zentrale Modelle wie kognitive Karten, Landmarken, Raumlernen und deren Einfluss auf Navigation.

  • Visuelle Aufmerksamkeit und Eye Tracking
    Vorstellung von Eye Tracking als Methode zur Erfassung von Aufmerksamkeitsfokussierung, mit Beispielen aus bisherigen Studien.

  • Adaptive Räume: Projektionssysteme, responsives Design
    Vorstellung existierender adaptiver Systeme in Museen, Retail oder Health Care und ihre Grenzen.

     

  • Architekturpsychologie / Human-Centered Design
    Wie beeinflussen Material, Licht, Maßstab oder Akustik die Orientierung? Verbindung zu Prinzipien des Human-Centered Designs.

  • Übersicht bestehender Methoden und Systeme
    Bewertung vorliegender Designstrategien und Identifikation von Forschungslücken.

3. Methodologie und Forschungsdesign

  • Mixed-Methods-Ansatz (qualitativ + quantitativ)
    Begründung für die kombinierte Nutzung von Experimenten, Interviews und Fragebögen zur umfassenden Erfassung subjektiver und objektiver Daten.

  • VR-Setups & Eye Tracking: Aufbau, Software, Versuchsanordnung
    Beschreibung, wie immersive 3D-Modelle erstellt und mit Eye Tracking kombiniert werden. Begründung der Tools (z. B. Unity, TouchDesigner).

  • Auswahl der Versuchspersonen / Testumgebungen
    Definition von Zielgruppen, ethische Rahmenbedingungen, Beschreibung der VR-Räume (z. B. Krankenhausflur vs. Museum).

  • Validierung, Skalierung, Replizierbarkeit
    Maßnahmen zur Sicherstellung wissenschaftlicher Qualität, wie Wiederholbarkeit der Szenarien und Datenstabilität.

  • Reflexion methodischer Grenzen
    Diskussion über mögliche Einschränkungen durch Technik, Testbedingungen oder Probandenauswahl.

4. Entwicklung des adaptiven Systems

  • Gestalterische und technische Grundlagen (TouchDesigner, Sensorik etc.)
    Überblick über technische Infrastruktur, die zur Echtzeitprojektion und Steuerung benötigt wird. Verbindung zum gestalterischen Anspruch.

  • Entwurf eines modularen Projektionssystems
    Konzeption eines Systems, das auf wechselnde Nutzungsbedingungen und Nutzergruppen reagieren kann.

  • Schnittstellen: Architektur - Software - Mensch
    Untersuchung der Interaktion zwischen Nutzenden und Raum durch Bewegung, Blickverhalten und Reaktion des Raumes.

  • Technischer Aufbau und Implementierung
    Beschreibung von Hardware-Komponenten wie Sensoren, Projektoren, Serverstruktur sowie Softwarelogik.

  • Raumbeispiel(e): Simulationsumgebung
    Konkrete Umsetzungsbeispiele für die Testumgebung (z. B. Flursituation mit und ohne Adaption).

5. Empirische Untersuchung

  • Durchführung der Eye-Tracking-Experimente
    Detaillierte Darstellung der Durchführung, Studiendesign und Abläufe.

  • Dokumentation und Auswertung (z. B. Heatmaps, Fixationsdaten, Orientierungserfolg)
    Methoden zur Visualisierung und quantitativen Analyse der gesammelten Daten.

  • Vergleichsgruppen: statisch vs. adaptiv
    Erklärung des Vergleichs zweier Szenarien - mit und ohne Projektionen - zur Effektivitätsmessung.

  • Interviews / subjektive Wahrnehmung
    Analyse qualitativer Rückmeldungen zu emotionaler Wahrnehmung, Unsicherheit und Verständlichkeit.

6. Analyse und Interpretation

  • Interpretation der Daten im Licht der Forschungsfragen
    Schlussfolgerungen aus quantitativen und qualitativen Befunden, Bezug auf Hypothesen.

  • Verbindung zur Theorie (z. B. kognitive Karten, emotionale Raumwahrnehmung)
    Rückbindung der Ergebnisse an theoretische Modelle und Diskussion von Implikationen.

  • Diskussion der Ergebnisse: Stärken, Schwächen, Grenzen
    Reflexion über die Aussagekraft der Daten, Herausforderungen bei der Übertragbarkeit und technologische Limitationen.

7. Entwurfs- und Planungsimplikationen

  • Übertragbarkeit in die architektonische Praxis
    Welche Gestaltungsempfehlungen können Architektinnen und Stadtplanerinnen konkret ableiten?

  • Empfehlungen für Planerinnen, Entwicklerinnen, Kommunen
    Politische, wirtschaftliche und soziale Kontextualisierung von Navigation als Bestandteil inklusiver Planung.

  • Integration in Designprozesse, partizipative Planung, universelles Design
    Zukunftsfähigkeit des Konzepts im Kontext aktueller Architekturparadigmen.

8. Fazit und Ausblick

  • Zusammenfassung der zentralen Erkenntnisse
    Synthese der wichtigsten Ergebnisse und deren Implikationen für Wissenschaft und Praxis.

  • Theoretischer, methodischer und praktischer Beitrag
    Bewertung des Innovationspotentials und der Relevanz im Forschungsfeld.

  • Weiterführende Forschungsperspektiven
    Ideen für Nachfolgeprojekte, etwa mit KI-Integration oder multisensorischer Erweiterung.

  • Gesellschaftlicher und ethischer Kontext
    Reflexion über mögliche ethische Fragestellungen (z. B. Überwachung, Individualisierung von Raum).

9. Literaturverzeichnis und Anhänge

  • Vollständige Quellennachweise
    Fachliteratur aus Architektur, Geoinformatik, Psychologie, HCI.

  • Technische Skizzen, Screenshots, Interviewleitfäden, Code-Ausschnitte (optional)
    Dokumentation der gestalterischen und technischen Umsetzung zur Nachvollziehbarkeit.

EN:

1. Introduction

  • Problem Statement & Relevance
    This section outlines why navigation in complex buildings represents a real challenge both from a user-centered and an architectural perspective. It explains how disorientation can lead to stress, inefficiency, and exclusion.

     

  • Research Objectives and Key Questions
    The central research question is: How can architecture use adaptive visual stimuli to improve spatial orientation? I define the hypotheses and explain the primary goal of my study.

  • Research Approach and Positioning
    I describe my interdisciplinary perspective combining architecture, geoinformatics, and cognitive psychology, and explain how my project differs from existing work.

     

  • Structure of the Thesis
    A preview of the thesis structure and its internal logic to provide the reader with orientation.

2. State of Research and Theoretical Background

  • Spatial Cognition and Orientation Theories
    Overview of key models such as cognitive maps, landmarks, and spatial learning, and how they influence navigation.

  • Visual Attention and Eye Tracking
    Introduction to eye tracking as a method for measuring visual attention, including examples from previous studies.

  • Adaptive Spaces: Projection Systems and Responsive Design
    Overview of existing adaptive systems in museums, retail, and healthcare, including their limitations.

  • Architectural Psychology / Human-Centered Design
    How material, lighting, scale, or acoustics influence orientation; connection to principles of human-centered design.

  • Review of Existing Methods and Systems
    Evaluation of current design strategies and identification of research gaps.

     

3. Methodology and Research Design

  • Mixed Methods Approach (Qualitative + Quantitative)
    Rationale for combining experiments, interviews, and questionnaires to capture both subjective and objective data.

  • VR Setups & Eye Tracking: Design, Software, Experiment Setup
    Description of how immersive 3D models are created and integrated with eye tracking. Justification for tools such as Unity and TouchDesigner.

  • Participant Selection / Test Environments
    Definition of target groups, ethical considerations, and description of virtual environments (e.g., hospital corridor vs. museum).

  • Validation, Scaling, Reproducibility
    Measures to ensure scientific quality, such as reproducibility of scenarios and data stability.

  • Reflection on Methodological Limitations
    Discussion of potential limitations arising from technology, test conditions, or participant selection.

4. Development of the Adaptive System

  • Design and Technical Foundations (TouchDesigner, Sensors, etc.)
    Overview of the technical infrastructure required for real-time projection and interaction, and how it supports design goals.

  • Design of a Modular Projection System
    Concept of a system capable of responding to varying user groups and spatial conditions.

  • Interfaces: Architecture - Software - Human
    Investigation of user-space interaction through movement, gaze, and spatial response.

  • Technical Setup and Implementation
    Description of hardware components (sensors, projectors, server architecture) and software logic.

  • Example Spaces: Simulation Environment
    Concrete examples of the test setup (e.g., corridor scenarios with and without projection).

5. Empirical Investigation

  • Execution of Eye-Tracking Experiments
    Detailed explanation of the study design, procedures, and protocols.

  • Documentation and Analysis (e.g., Heatmaps, Fixation Data, Orientation Success)
    Methods for visualizing and analyzing the collected data.

  • Comparison Groups: Static vs. Adaptive
    Explanation of two test conditions with and without adaptive projections to measure effectiveness.

  • Interviews / Subjective Perception
    Qualitative analysis of feedback on emotional perception, confusion, and spatial clarity.

6. Analysis and Interpretation

  • Interpretation of Data in Light of Research Questions
    Drawing conclusions from both quantitative and qualitative results and testing hypotheses.

  • Theoretical Integration (e.g., Cognitive Maps, Emotional Perception)
    Linking findings to theoretical models and discussing implications.

     

  • Discussion of Results: Strengths, Weaknesses, Limitations
    Critical reflection on the validity, applicability, and technological boundaries of the findings.

7. Design and Planning Implications

  • Transferability to Architectural Practice
    What specific recommendations can architects and urban designers derive from the findings?

  • Recommendations for Planners, Developers, Municipalities
    Contextualization of navigation as part of inclusive planning in political, economic, and social settings.

  • Integration into Design Processes, Participatory Planning, Universal Design
    Long-term viability of the concept within contemporary architectural discourse.

8. Conclusion and Outlook

  • Summary of Key Findings
    Synthesis of the core insights and their impact on science and practice.

     

  • Theoretical, Methodological, and Practical Contribution
    Evaluation of the innovation potential and relevance to the research field.

  • Future Research Perspectives
    Ideas for follow-up studies, e.g., integrating AI or multisensory environments.

     

  • Societal and Ethical Context
    Reflections on possible ethical issues such as surveillance or spatial individualization.

9. References and Appendices

  • Complete Bibliography
    Specialist literature from architecture, geoinformatics, psychology, and HCI.

  • Technical Sketches, Screenshots, Interview Guides, Code Samples (Optional)
    Documentation of the design and technical implementation for traceability.

     

Zeitplan
Timeline

Timeline

DE:

1. Jahr

1. Theoretische Grundlagen und Recherche

  • Literaturrecherche zu Raumkognition, Eye Tracking, adaptiver Architektur
    Mai - Dezember

  • Aufbau theoretischer Rahmen und Ableitung der Forschungsfragen
    Juni - Januar

  • Erstellung Literaturverwaltung (z. B. Citavi, Zotero), Dokumentation
    Mai - fortlaufend

2. Technologierecherche & Testaufbau

  • Sichtung und Vergleich technischer Systeme (TouchDesigner, Unity, VR-Brillen etc.)
    Juli - Oktober

  • Auswahl & Erprobung von Software-Tools und Sensorik
    August - Dezember

  • Aufbau erster VR-Testumgebungen (z. B. Gangsysteme, Labyrinthe)
    Oktober - Februar

3. Versuchsdesign & Ethik

  • Entwicklung des Experimentdesigns inkl. Eye Tracking-Protokolle
    November - Februar

  • Vorbereitung Ethikantrag, Teilnehmenden-Management, Pretests
    Dezember - März

2. Jahr

4. Systementwicklung & Programmierung

  • Entwurf des adaptiven Projektionssystems (Prototyp)
    Mai - Oktober

  • Programmierung der adaptiven Reaktionen (visuelle Reize, Trigger etc.)
    Juni - Dezember

  • Aufbau & Test der technischen Infrastruktur für Laborexperimente
    August - Januar

5. Empirische Durchführung

  • Rekrutierung der Proband*innen und Durchführung der Eye-Tracking-Studien
    Oktober - Februar

  • Durchführung qualitativer Interviews (Parallel oder direkt im Anschluss)
    November - März

  • Ergänzende Tests mit Kontrollgruppen (statisch vs. adaptiv)
    Dezember - März


 

6. Auswertung & Analyse

  • Datenaufbereitung (Heatmaps, Pfadanalysen, Fixationen etc.)
    Januar - März

  • Erste Ergebnisinterpretation und Rückkopplung mit Theorie
    März - April

3. Jahr

7. Vertiefung & Iteration

  • Iterative Weiterentwicklung des Systems auf Basis der Auswertung
    Mai - August

  • Anwendung auf weitere Testumgebung(en) (optional, je nach Ergebnis)
    Juni - September

8. Schlusskapitel & Praxisübertragung

  • Ableitung architektonischer Handlungsempfehlungen
    Juli - Oktober

  • Einbindung in Planungsprozesse, Barrierefreiheit, inklusives Design
    August - Oktober

9. Schreiben & Fertigstellung

  • Schreiben der Kapitel 1-8
    September - Januar

  • Überarbeitung, Abbildungen, Layout
    Februar - März

  • Einreichung & Vorbereitung der Verteidigung / Veröffentlichung
    April

EN:

Year 1

1. Theoretical Foundations and Literature Review

  • Literature review on spatial cognition, eye tracking, and adaptive architecture
    May - December

  • Development of theoretical framework and derivation of research questions
    June - January

  • Setup of literature management tools (e.g., Citavi, Zotero), documentation
    May - ongoing

2. Technology Research & Prototype Setup

  • Review and comparison of technical systems (TouchDesigner, Unity, VR headsets, etc.)
    July - October

  • Selection and testing of software tools and sensors
    August - December

  • Construction of initial VR test environments (e.g., corridors, mazes)
    October - February

3. Experimental Design & Ethics

  • Development of experimental design incl. eye tracking protocols
    November - February

  • Preparation of ethics application, participant management, pretests
    December - March

Year 2

4. System Development & Programming

  • Design of adaptive projection system (prototype)
    May - October

  • Programming adaptive responses (visual stimuli, triggers, etc.)
    June - December

  • Setup and testing of technical infrastructure for lab experiments
    August - January

5. Empirical Study

  • Recruitment of participants and execution of eye-tracking studies
    October - February

  • Conducting qualitative interviews (parallel or immediately after experiments)
    November - March

  • Additional tests with control groups (static vs. adaptive environments)
    December - March

6. Data Evaluation & Analysis

  • Data processing (heatmaps, path analyses, fixation patterns, etc.)
    January - March

  • Initial interpretation of results and theoretical integration
    March - April

Year 3

7. Iteration & Expansion

  • Iterative refinement of the system based on the evaluation
    May - August

  • Application to additional test environments (optional, depending on results)
    June - September

8. Conclusions & Practical Transfer

  • Derivation of architectural recommendations
    July - October

  • Integration into planning processes, focus on accessibility and inclusive design
    August - October

9. Writing & Completion

  • Writing of chapters 1-8
    September - January

  • Revisions, visuals, layout
    February - March

  • Submission & preparation for defense / publication
    April

Zeitplan.png

Einleitung und Problemstellung
Introduction and problem definition

Introduction, Problem Definition

DE:

Viele Menschen verlieren in komplexen Gebäuden wie Krankenhäusern, Flughäfen oder Universitäten schnell die Orientierung. Die Gründe hierfür sind vielfältig - sie reichen von visueller Gleichförmigkeit über unklare Wegeführungen bis hin zu psychologischen Einflussfaktoren wie kognitiver Überforderung. Trotz gestalterischer und technologischer Fortschritte wird die Frage, warum wir uns verirren, in der Architektur meist nicht systematisch adressiert.

Diese Dissertation untersucht, wie sich Navigation als wahrnehmungsbezogener Prozess besser verstehen lässt - und wie sich daraus architektonische Konsequenzen ableiten lassen. Im Mittelpunkt steht die Frage, wie architektonische Räume adaptiv und responsiv auf menschliche Wahrnehmung reagieren können.

EN:

Many people quickly lose their sense of direction in complex buildings such as hospitals, airports, or universities. The causes are diverse ranging from visual uniformity and unclear circulation paths to psychological factors such as cognitive overload. Despite advances in both design and technology, the question of why we get lost is rarely addressed systematically in the field of architecture.

This dissertation explores how navigation can be better understood as a perception-driven process and how architectural design can respond accordingly. At the center lies the question of how built environments can adapt and respond to human perception in order to support orientation and spatial understanding.

Forschungsstand und theoretischer Hintergrund
State of research and theoretical background

Research Status, Theory

DE:

Die Forschung zu räumlicher Kognition hat gezeigt, dass visuelle Merkmale - insbesondere Symmetrie, Wiederholungen und fehlende Kontraste - die Orientierung stark beeinflussen (Carlson et al., 2010; Salingaros, 2020). Gleichzeitig haben sich Eye Tracking und Virtual Reality als präzise Werkzeuge etabliert, um visuelle Aufmerksamkeit und Orientierungsmuster im Raumverhalten zu analysieren.

In meiner Vorarbeit „Designing for Direction“ (2024) habe ich Ursachen räumlicher Desorientierung umfassend aufgearbeitet. Dabei wurde deutlich: Architektur beeinflusst nicht nur Bewegung, sondern auch kognitive Prozesse - etwa durch Layout-Komplexität, multisensorische Reize oder das Vorhandensein (oder Fehlen) distinkter Raummerkmale.

In meiner Masterarbeit untersuchte ich erste Ansätze adaptiver Projektionssysteme, die architektonische Räume in Echtzeit visuell modifizieren. Diese Erkenntnisse bilden die Grundlage für den nun geplanten wissenschaftlichen Transfer in die Navigation.

EN:

Research in spatial cognition has shown that visual features particularly symmetry, repetition, and lack of contrast significantly influence our ability to orient ourselves (Carlson et al., 2010; Salingaros, 2020). At the same time, eye tracking and virtual reality have become established as precise tools for analyzing visual attention and orientation patterns in spatial behavior.

In my previous work Designing for Direction (2024), I conducted an in-depth analysis of the causes of spatial disorientation. The findings highlighted that architecture not only influences physical movement but also affects cognitive processes through layout complexity, multisensory stimuli, or the presence (or absence) of distinct spatial features.

In my Master's thesis, I explored early approaches to adaptive projection systems that visually modify architectural spaces in real time. These insights now form the foundation for a scientific transfer of these principles into the domain of navigation.

Forschungsfrage und Zielsetzung
Research question and objective

Research Question, Objective

DE:

Die zentrale Forschungsfrage lautet:
Wie beeinflusst visuelle Wahrnehmung durch Eye Tracking das Navigationserleben - und wie können adaptive Projektionswände darauf in Echtzeit reagieren, um Orientierung gezielt zu unterstützen?

Ziele der Dissertation:

  • Die systematische Analyse von Navigationsverhalten mithilfe von Eye Tracking.

  • Die Entwicklung adaptiver räumlicher Interfaces in Form von projektionsbasierten Wänden.

  • Der Nachweis, dass dynamische architektonische Elemente Orientierung messbar verbessern können.

EN:

The central research question is:
How does visual perception, as measured by eye tracking, shape the experience of navigation and how can adaptive projection walls respond to this perception in real time to actively support orientation?

Objectives of the dissertation:

  • To systematically analyze navigational behavior using eye-tracking methods.

  • To develop adaptive spatial interfaces in the form of projection-based architectural elements.

  • To demonstrate that dynamic architectural features can measurably improve spatial orientation.

Methodik und Vorgehensweise
Methodology and procedure

Methodology, Procedure

DE:

Die Arbeit verbindet empirische Forschung, räumliche Simulation und interaktive Gestaltung:

  • Eye Tracking in virtuellen Testumgebungen
    Untersuchung visueller Aufmerksamkeit in komplexen Gebäudelayouts.

  • Adaptive Projektionsumgebungen
    Entwicklung und Programmierung von Wandinterfaces, die in Echtzeit auf Blickverhalten reagieren.

  • Empirische Vergleichsstudien
    Durchführung kontrollierter Studien mit Proband*innen zur Evaluierung des Orientierungserlebens in statischen vs. adaptiven Räumen.

  • Datenanalyse
    Kombination quantitativer Metriken (Fixationen, Pfadlänge, Fehlerquote) mit qualitativen Befragungen zur Raumwahrnehmung.

EN:

This research combines empirical investigation, spatial simulation, and interactive design:

  • Eye tracking in virtual test environments
    Analysis of visual attention within complex building layouts.

  • Adaptive projection environments
    Development and programming of wall-based interfaces that respond in real time to users’ gaze behavior.

  • Empirical comparative studies
    Controlled experiments with participants to evaluate navigation experiences in static versus adaptive spaces.

  • Data analysis
    Integration of quantitative metrics (fixations, path length, error rate) with qualitative surveys on spatial perception.

Relevanz und gesellschaftlicher Bezug
Relevance and social reference

Relevance, Social Reference

DE:

Verloren gehen kann jeder - besonders in stressbeladenen Kontexten wie Notaufnahmen, Ämtern oder Bildungseinrichtungen. Genau hier sind intuitive Wegeführungen essenziell.

Diese Arbeit trägt dazu bei, Navigation nicht nur aus gestalterischer, sondern aus menschzentrierter, kognitiver Perspektive neu zu denken. Adaptive Architektur kann Orientierung erleichtern, psychische Belastung senken und Teilhabe fördern - etwa für ältere Menschen oder Personen mit kognitiven Einschränkungen.

Darüber hinaus leistet das Projekt einen Beitrag zur interdisziplinären Forschung zwischen Architektur, Informatik und Psychologie und zeigt neue Wege auf, wie digitale Technologien sinnvoll in reale Räume integriert werden können.

EN:

Anyone can get lost especially in high-stress environments such as emergency rooms, public offices, or educational institutions. In such contexts, intuitive wayfinding is essential.

This research aims to reconceptualize navigation not just from a design perspective, but through a human-centered and cognitive lens. Adaptive architecture can facilitate orientation, reduce psychological stress, and promote inclusion for example, for older adults or people with cognitive impairments.

Moreover, the project contributes to interdisciplinary research at the intersection of architecture, computer science, and psychology, and explores how digital technologies can be meaningfully integrated into real-world spatial environments.

Literaturrecherche für das Promotionsvorhaben
Literature research for the PhD project

Literature Research

EN:

Designing for Direction: How Architecture and Cognition Shape Building Navigation​

1.     Abstract

In modern architecture, the ability to navigate within buildings plays a crucial role, particularly in complex structures such as shopping centers, hospitals, or university buildings. Many users report difficulties in finding their way, leading to stress and inefficiency. This issue raises critical questions: What architectural, cognitive, and technological factors influence spatial perception and orientation? How can architects and designers apply these insights to create more navigable and user-friendly buildings?

This literature review addresses psychological and cognitive aspects, architectural design principles, and the role of emerging technologies such as Virtual Reality in improving wayfinding. Through a structured und thematisch gegliederte Auseinandersetzung werden die Ursachen und Potenziale für bessere Orientierung im Raum analysiert. Die Ergebnisse bilden die theoretische Grundlage für das Dissertationsprojekt.

 

2.     Why People Get Lost in Buildings: Visual Uniformity and Its Impact on Orientation​​

2.1    Visual Uniformity and Its Impact on Orientation

Hannes Eisler, in “Multidimensional similarity: An experimental and theoretical comparison of vector, distance, and set theoretical models II”, examines subjective spatial perception using multidimensional analysis. His research highlights how visual uniformity within architectural spaces can hinder individuals’ ability to distinguish different areas, leading to disorientation (Eisler & Roskam, 1977). This foundational work supports the hypothesis that differentiation is key to orientation.

2.2    Complexity of Building Layouts

Carlson et al. (2010), in their study "Getting Lost in Buildings," explore key architectural factors contributing to disorientation. Complex layouts with many intersections and lacking spatial hierarchies were found to increase confusion. Their research, echoed in Jamshidi et al. (2020), suggests that simpler, intuitive floorplans improve users’ wayfinding performance. The absence of structural legibility is seen as a core design flaw.

2.3    Lack of Distinctive Wayfinding Signs

Jamshidi, Ensafi, and Pati (2020) offer a comprehensive review of wayfinding in interior environments. They emphasize the importance of clear, recognizable signage and its placement. Their review compiles numerous case studies, indicating that legible, semantically intuitive signage systems significantly improve navigability and user confidence. This aligns with architectural strategies that incorporate visible landmarks, contrasting materials, and integrated signage design.

2.4    Psychological Effects of Spatial Design

Lauri Nummenmaa et al. (2018), in their study “Maps of Subjective Feelings,” analyze how spatial design affects emotional and cognitive states. Their findings underline the importance of accounting for affective factors and cognitive load in spatial layout. Overwhelming or monotonous environments increase stress, while emotionally supportive spatial cues improve orientation. These insights suggest a direct link between architectural form, mental processing, and spatial performance.

 

3.     The Uniformity of Architectural Spaces

3.1    The Aesthetic-Functional Ambiguity of Uniformity

Nikos A. Salingaros, in his essay "Symmetry Gives Meaning to Architecture," discusses how uniformity and repetition in architectural design can impact spatial cognition. While visual consistency may offer a sense of coherence, its overuse reduces spatial differentiation, which is crucial for orientation (Salingaros, 2020). Particularly in large-scale environments, repeated forms and surfaces can lead to perceptual disorientation, as users struggle to identify unique reference points. This reinforces the need to balance aesthetic order with functional clarity.

3.2    Symmetry and Its Role in Navigational Clarity

Symmetry is often perceived as harmonious and aesthetically pleasing, but its spatial effects are nuanced. Azemati et al. (2020) investigate how symmetrical Fassaden are interpreted by users. While symmetry contributes to visual balance, the authors argue that excessive or uncontextual symmetry can obscure spatial cues critical for orientation. When every corridor or facade appears identical, spatial learning is inhibited. Their work highlights the need to distinguish visual harmony from functional legibility.

3.3    Standardization and the Loss of Spatial Differentiation

Standardization, driven by efficiency in the construction industry, leads to uniform spatial typologies. Haunert (2012) shows how automated design and urban modeling routines reinforce visual repetition. His work on symmetry detection in maps and urban forms provides insight into how computational tools could be repurposed not only to analyze but also to counteract uniformity. This aspect is particularly relevant to the geoinformatic components of my dissertation, where algorithmic tools could be integrated into adaptive navigation support systems.

3.4    Aesthetic Priorities vs. Wayfinding Performance

Gieryn (2002) explores the cultural and symbolic meanings of buildings, emphasizing how design choices are often shaped by values beyond functionality. While architecture as expression is important, neglecting navigational clarity in favor of pure formalism can alienate users. His thesis that “what buildings do” includes shaping behavior and experience reinforces the argument that form and function must co-evolve. Orientation is not an afterthought; it is a core aspect of architectural performance.

4.     Measuring and Applying Symmetry in Architectural Practice

4.1    Quantifying Symmetry: From Theory to Application

Nikos A. Salingaros provides a conceptual basis for symmetry in architecture, but its operationalization in digital workflows requires concrete tools. His theories about pattern recognition and visual order serve as a reference for current methods aiming to quantify spatial structures. Symmetry becomes a parameter of navigational efficiency when linked to visual landmarks, transitions, and node distinction.

4.2    Symmetry Detection in Digital Design Tools

Haunert (2012) introduces algorithmic symmetry detection in urban space analysis and map generalization. While developed for cartographic simplification, these tools have strong potential for use in architectural layout evaluation. Their ability to detect redundant structures and mirror geometries may support the development of navigation-sensitive design guidelines. Integrating such methods into architectural BIM workflows could allow for real-time feedback on spatial clarity during design.

4.3    The Double-Edged Nature of Symmetry

Bruns and Egenhofer (n.d.) address the perceptual ambiguity of spatial similarity. Their work highlights that while symmetry may enhance coherence, excessive similarity can reduce spatial memorability. In navigation, not all symmetry is beneficial distinguishability is more important than balance. This tension must be carefully managed in design: symmetry can structure, but also confuse.

4.4    Case Study Analysis: Cognitive Principles in Iconic Designs

Werner and Long (2003) explore architectural cognition through the lens of Le Corbusier’s work. Their case studies show how spatial sequences, perspective shifts, and contrastive volumes support wayfinding even in geometrically rigid environments. They argue for a cognitive reading of design, where spatial decisions are guided not just by form, but by experiential clarity. These findings strengthen the argument that good architecture internalizes cognitive principles.

 

5.     Spatial Abilities and Educational Approaches

5.1    Gender and Individual Differences in Spatial Skills

Research on spatial ability consistently shows individual variability, especially regarding gender differences. Studies in architecture education highlight that men and women often exhibit distinct strengths in spatial visualization and mental rotation. These differences suggest a need for inclusive educational strategies that address diverse cognitive profiles (Frontiers).

5.2    Virtual Reality as a Tool for Spatial Training

Emerging evidence points to Virtual Reality (VR) as a powerful medium for enhancing spatial understanding. In comparison to static 2D exercises, VR enables embodied exploration and dynamic rotation, improving both performance and engagement (MDPI). For architecture students, this means that abstract spatial concepts can be experienced interactively closing the gap between design theory and spatial intuition.

5.3    Cognitive Mapping and Multisensory Learning

Cognitive maps help individuals encode and retrieve spatial knowledge. Spatial learning is strengthened when visual, auditory, and haptic information converge. SpringerLink studies show that multisensory learning environments especially those that support wayfinding enhance long-term spatial memory. These insights reinforce the relevance of perception-oriented design strategies in architectural education.

5.4    Architectural Complexity and Spatial Imagination

Multi-storey buildings with complex circulation patterns challenge even advanced users. Spatial imagination is essential for mental restructuring of vertical movement. Studies from SpringerOpen reveal that learners trained in rotating and elevating perspectives develop stronger mental models of complex structures. This supports the use of 3D visualization and scenario-based learning in spatial design curricula.

6.     Multisensory Architecture and Health-Oriented Design

6.1    Sensory Environments and Psychological Well-being

Multisensory environments influence emotional and cognitive states. Studies from SpringerOpen demonstrate that spaces addressing sight, sound, and touch reduce anxiety and promote well-being. Particularly in healthcare architecture, where stress levels are elevated, multisensory design can improve both patient outcomes and spatial orientation.

6.2    Wayfinding in Healthcare Settings

Healthcare facilities often feature complex layouts that confuse users. BilPub Group research on Nigerian hospitals uses axial analysis to show how poor spatial legibility affects movement. Improved layout logic, material contrasts, and spatial landmarks are shown to improve orientation. These insights are transferable to other building types with high cognitive demands.

6.3    Landscape and Outdoor Navigation Challenges

Spatial abilities are not limited to indoor architecture. In landscape architecture, navigation over varied terrain introduces challenges of scale and orientation. MDPI studies emphasize the need for intuitive paths, clear edges, and multisensory stimuli (e.g., soundscapes, textures) to enhance outdoor wayfinding. Education in this field increasingly adopts multisensory design as a pedagogical tool.

6.4    Cultural and Historical Patterns of Spatial Experience

Historical urban planning integrated natural patterns and perceptual logic long before digital tools emerged. SpringerLink literature shows how spatial logics were culturally encoded e.g., axiality in classical cities or modularity in Islamic architecture. These logics shaped navigational ease. Understanding their relevance today opens avenues for integrating tradition-informed orientation strategies.

7.     Technological Tools for Enhancing Wayfinding

7.1    Virtual Reality as Testing Environment

Virtual Reality (VR) allows architects to simulate navigation scenarios and evaluate user experience in real time. It provides an immersive platform to identify spatial confusion, optimize signage, and test alternative layouts. The iterative process becomes more data-driven, as eye tracking and movement data from VR sessions reveal behavior patterns that inform design refinement.

7.2    Eye Tracking for Spatial Attention Mapping

Eye tracking technology reveals where users focus their attention, which cues they ignore, and when visual overload occurs. This insight is critical for understanding perceptual thresholds and designing for cognitive efficiency. Eye tracking also helps identify visual hierarchies and evaluate if wayfinding elements attract attention as intended.

7.3    Adaptive Projection as Interactive Navigation Aid

Building on my Master’s work, adaptive projection offers a dynamic approach to spatial communication. Projection-mapped signage, floor arrows, or ambient animations can change based on user position, gaze, or time. This interactivity enhances engagement and allows personalized wayfinding in complex environments. Its application in museums, hospitals, or transit hubs offers promising results.

7.4    Toward Personalized Navigation Systems

By combining VR simulation, eye tracking data, and adaptive projection, environments can respond to real-time perception and behavior. This fusion enables personalized navigation assistance projecting different cues based on user needs, stress levels, or previous behavior. It represents a paradigm shift from static signage to responsive environments tailored to cognitive diversity.

8.     Towards an Integrative Theory of Navigability

8.1    From Fragmented Findings to Cohesive Principles

Across architectural, psychological, and technological disciplines, diverse insights have emerged on how individuals perceive, interpret, and move through space. Yet, these findings are often siloed, leading to a fragmented understanding of wayfinding. An integrative theory must consolidate visual cognition, environmental psychology, and interaction design into a unified framework.

8.2    The Triad of Spatial Orientation: Visual, Cognitive, Responsive

This review identifies three foundational domains of navigability:
Visual: The spatial configuration, landmarks, and graphical signage shape first impressions and mental maps.
Cognitive: Users interpret environments based on memory, attention, and prior experience. Emotional factors modulate spatial understanding.
Responsive: Environments that adapt to perception through projection, lighting, or smart systems can guide users dynamically and reduce uncertainty.

8.3    Navigability as a Performance Metric in Design

Navigability should not be viewed as a secondary quality, but as a central performance criterion in architectural design. Like energy efficiency or structural stability, wayfinding effectiveness can be simulated, measured, and optimized. Eye tracking, spatial analytics, and user testing (virtual or real) become tools for iterative refinement.

8.4    Design Implications and Future Research

An integrative theory encourages designers to move beyond intuition or convention. Instead, they can draw on empirical data to inform spatial zoning, circulation routes, and material choices. Future research should focus on hybrid models that combine predictive user behavior, adaptive systems, and embedded cognition especially in high-stakes environments like healthcare, transit hubs, or educational campuses.

9.     Analyzing Spatial Structures and Wayfinding

9.1    Spatial Configuration and Navigation Behavior

Studies in airports and hospitals show how layout patterns such as axial symmetry, node density, and segment length affect navigational performance. SpringerLink and SpringerOpen literature suggests that certain spatial geometries facilitate better mental mapping and movement efficiency, especially when supported by visual cues.

9.2    Behavioral Analysis in Complex Spaces

Advanced tracking methods, including motion mapping and behavioral heatmaps, allow the analysis of pedestrian behavior. These tools reveal decision points, confusion zones, and the effectiveness of navigational aids. They serve as critical evaluation mechanisms for iterative design.

9.3    Gender Differences in Wayfinding Performance

Research has uncovered gender-related differences in spatial perception and strategy use. Men tend to rely more on metric orientation; women often perform better using landmarks and relative spatial relationships. These findings suggest that universal design must accommodate diverse navigational approaches.

10.   Historical and Cultural Influences on Spatial Concepts

10.1  Evolution of Spatial Organization

From Roman grid cities to Islamic courtyard typologies, historical design strategies reflect deeply ingrained cultural logics. These systems often embody intuitive orientation principles centrality, hierarchy, axiality that remain relevant today.

10.2  Cultural Cognition and Urban Navigation

Different cultures develop different cognitive maps. Collectivist cultures, for example, emphasize communal orientation cues, while individualist cultures favor self-referenced spatial logic. Designing for diverse users requires an awareness of these cognitive-cultural dimensions.

10.3  Tradition-Inspired Design Principles

Reviving historical patterns (e.g., sight lines to domes, orientation toward courtyards) can enhance spatial legibility. This doesn’t mean returning to the past, but abstracting principles that support clarity and identity in contemporary design.

11.   Environmental and Health Psychology in Architecture

11.1  Sick Building Syndrome and Design Factors

Research shows that overly uniform, poorly ventilated, or visually monotonous spaces contribute to stress and health issues, such as Sick Building Syndrome (SBS). Architecture must consider the sensory and psychological needs of users.

11.2  Spatial Design and Emotional Regulation

Spaces with balanced light, tactile diversity, and acoustic control help modulate mood and attention. Evidence from SpringerOpen suggests that these qualities also improve orientation and reduce cognitive fatigue.

11.3  Design for Well-being and Navigability

Wayfinding and well-being are interlinked: confused users experience higher stress. Conversely, environments designed with multisensory and cognitive principles foster emotional stability and efficient navigation.

12.   References

  • Azemati, H., Jam, F., Ghorbani, M., Dehmer, M., Ebrahimpour, R., Ghanbaran, A., & Emmert-Streib, F. (2020). The role of symmetry in the aesthetics of residential building façades using cognitive science methods. Symmetry, 12(9), 1438. https://doi.org/10.3390/sym12091438

  • Bruns, H. T., & Egenhofer, M. J. (n.d.). Similarity of spatial scenes.

  • Carlson, L. A., Hölscher, C., Shipley, T. F., & Dalton, R. C. (2010). Getting lost in buildings. Current Directions in Psychological Science, 19(5), 284-289. https://doi.org/10.1177/0963721410383243

  • Eisler, H., & Roskam, E. E. (1977). Multidimensional similarity: An experimental and theoretical comparison of vector, distance, and set theoretical models II. Acta Psychologica, 41(5), 335-363. https://doi.org/10.1016/0001-6918(77)90013-0

  • Gieryn, T. F. (2002). What buildings do. Theory and Society, 31(1), 35-74. https://www.jstor.org/stable/658136

  • Haunert, J.-H. (2012). A symmetry detector for map generalization and urban space analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 66-77. https://doi.org/10.1016/j.isprsjprs.2012.08.004

  • Jamshidi, S., Ensafi, M., & Pati, D. (2020). Wayfinding in interior environments: An integrative review. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.549628

  • Nikos A., S. (2020). Symmetry gives meaning to architecture. Symmetry: Culture and Science, 31(3), 231-260. https://doi.org/10.26830/symmetry20203

  • Nummenmaa, L., Hari, R., Hietanen, J. K., & Glerean, E. (2018). Maps of subjective feelings. PNAS, 115(37), 9198-9203. https://doi.org/10.1073/pnas.1807390115

  • Werner, S., & Long, P. (2003). Cognition meets Le Corbusier Cognitive principles of architectural design. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial Cognition III (pp. 112-126). Springer. https://doi.org/10.1007/3-540-45004-1_7

 

End of Literature Review - prepared as part of the PhD application by Linus Manuel Schilling, Universität Münster, 2025.

bottom of page